Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629334

RESUMO

Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.

2.
BMC Plant Biol ; 24(1): 259, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594635

RESUMO

BACKGROUND: Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS: A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION: The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.


Assuntos
Chrysanthemum , Transcriptoma , Vigor Híbrido/genética , Chrysanthemum/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Rep ; 43(4): 84, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448703

RESUMO

KEY MESSAGE: The dynamic genetic architecture of flowering time in chrysanthemum was elucidated by GWAS. Thirty-six known genes and 14 candidate genes were identified around the stable QTNs and QEIs, among which ERF-1 was highlighted. Flowering time (FT) adaptation is one of the major breeding goals in chrysanthemum, a multipurpose ornamental plant. In order to reveal the dynamic genetic architecture of FT in chrysanthemum, phenotype investigation of ten FT-related traits was conducted on 169 entries in 2 environments. The broad-sense heritability of five non-conditional FT traits, i.e., budding (FBD), visible coloring (VC), early opening (EO), full-bloom (OF) and decay period (DP), ranged from 56.93 to 84.26%, which were higher than that of the five derived conditional FT traits (38.51-75.13%). The phenotypic variation coefficients of OF_EO and DP_OF were relatively large ranging from 30.59 to 36.17%. Based on 375,865 SNPs, the compressed variance component mixed linear model 3VmrMLM was applied for a multi-locus genome-wide association study (GWAS). As a result, 313 quantitative trait nucleotides (QTNs) were identified for the non-conditional FT traits in single-environment analysis, while 119 QTNs and 67 QTN-by-environment interactions (QEIs) were identified in multi-environment analysis. As for the conditional traits, 343 QTNs were detected in single-environment analysis, and 119 QTNs and 83 QEIs were identified in multi- environment analysis. Among the genes around stable QTNs and QEIs, 36 were orthologs of known FT genes in Arabidopsis and other plants; 14 candidates were mined by combining the transcriptomics data and functional annotation, including ERF-1, ACA10, and FOP1. Furthermore, the haplotype analysis of ERF-1 revealed six elite accessions with extreme FBD. Our findings contribute to the understanding of dynamic genetic architecture of FT and provide valuable resources for future chrysanthemum molecular breeding programs.


Assuntos
Arabidopsis , Chrysanthemum , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Reprodução , Chrysanthemum/genética
4.
Chromosome Res ; 32(2): 5, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502277

RESUMO

Artemisia is a large genus encompassing about 400 diverse species, many of which have considerable medicinal and ecological value. However, complex morphological information and variation in ploidy level and nuclear DNA content have presented challenges for evolution studies of this genus. Consequently, taxonomic inconsistencies within the genus persist, hindering the utilization of such large plant resources. Researchers have utilized satellite DNAs to aid in chromosome identification, species classification, and evolutionary studies due to their significant sequence and copy number variation between species and close relatives. In the present study, the RepeatExplorer2 pipeline was utilized to identify 10 satellite DNAs from three species (Artemisia annua, Artemisia vulgaris, Artemisia viridisquama), and fluorescence in situ hybridization confirmed their distribution on chromosomes in 24 species, including 19 Artemisia species with 5 outgroup species from Ajania and Chrysanthemum. Signals of satellite DNAs exhibited substantial differences between species. We obtained one genus-specific satellite from the sequences. Additionally, molecular cytogenetic maps were constructed for Artemisia vulgaris, Artemisia leucophylla, and Artemisia viridisquama. One species (Artemisia verbenacea) showed a FISH distribution pattern suggestive of an allotriploid origin. Heteromorphic FISH signals between homologous chromosomes in Artemisia plants were observed at a high level. Additionally, the relative relationships between species were discussed by comparing ideograms. The results of the present study provide new insights into the accurate identification and taxonomy of the Artemisia genus using molecular cytological methods.


Assuntos
Artemisia , Artemisia/genética , Hibridização in Situ Fluorescente , Filogenia , DNA Satélite/genética , Variações do Número de Cópias de DNA
5.
Hortic Res ; 11(1): uhad236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222820

RESUMO

Plant height (PH) is a crucial trait determining plant architecture in chrysanthemum. To better understand the genetic basis of PH, we investigated the variations of PH, internode number (IN), internode length (IL), and stem diameter (SD) in a panel of 200 cut chrysanthemum accessions. Based on 330 710 high-quality SNPs generated by genotyping by sequencing, a total of 42 associations were identified via a genome-wide association study (GWAS), and 16 genomic regions covering 2.57 Mb of the whole genome were detected through selective sweep analysis. In addition, two SNPs, Chr1_339370594 and Chr18_230810045, respectively associated with PH and SD, overlapped with the selective sweep regions from FST and π ratios. Moreover, candidate genes involved in hormones, growth, transcriptional regulation, and metabolic processes were highlighted based on the annotation of homologous genes in Arabidopsis and transcriptomes in chrysanthemum. Finally, genomic selection for four PH-related traits was performed using a ridge regression best linear unbiased predictor model (rrBLUP) and six marker sets. The marker set constituting the top 1000 most significant SNPs identified via GWAS showed higher predictabilities for the four PH-related traits, ranging from 0.94 to 0.97. These findings improve our knowledge of the genetic basis of PH and provide valuable markers that could be applied in chrysanthemum genomic selection breeding programs.

6.
BMC Plant Biol ; 24(1): 76, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281936

RESUMO

BACKGROUND: The growth and ornamental value of chrysanthemums are frequently hindered by aphid attacks. The ethylene-responsive factor (ERF) gene family is pivotal in responding to biotic stress, including insect stress. However, to date, little is known regarding the involvement of ERF transcription factors (TFs) in the response of chrysanthemum to aphids. RESULTS: In the present study, CmHRE2-like from chrysanthemum (Chrysanthemum morifolium), a transcription activator that localizes mainly to the nucleus, was cloned. Expression is induced by aphid infestation. Overexpression of CmHRE2-like in chrysanthemum mediated its susceptibility to aphids, whereas CmHRE2-like-SRDX dominant repressor transgenic plants enhanced the resistance of chrysanthemum to aphids, suggesting that CmHRE2-like contributes to the susceptibility of chrysanthemum to aphids. The flavonoids in CmHRE2-like-overexpression plants were decreased by 29% and 28% in two different lines, whereas they were increased by 42% and 29% in CmHRE2-like-SRDX dominant repressor transgenic plants. The expression of Chrysanthemum-chalcone-synthase gene(CmCHS), chalcone isomerase gene (CmCHI), and flavonoid 3'-hydroxylase gene(CmF3'H) was downregulated in CmHRE2-like overexpression plants and upregulated in CmHRE2-like-SRDX dominant repressor transgenic plants, suggesting that CmHRE2-like regulates the resistance of chrysanthemum to aphids partially through the regulation of flavonoid biosynthesis. CONCLUSION: CmHRE2-like was a key gene regulating the vulnerability of chrysanthemum to aphids. This study offers fresh perspectives on the molecular mechanisms of chrysanthemum-aphid interactions and may bear practical significance for developing new strategies to manage aphid infestation in chrysanthemums.


Assuntos
Afídeos , Chrysanthemum , Animais , Chrysanthemum/genética , Chrysanthemum/metabolismo , Afídeos/fisiologia , Flavonoides/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas
7.
J Exp Bot ; 75(5): 1479-1492, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952115

RESUMO

Ethylene-responsive factors (ERF) play an important role in plant responses to waterlogging stress. However, the function and mechanism of action of ERFVIII in response to waterlogging stress remain poorly understood. In this study, we found that expression of the ERF VIIIa gene CmERF4 in chrysanthemum was induced by waterlogging stress. CmERF4 localized to the nucleus when expressed in tobacco leaves. Yeast two-hybrid and luciferase assays showed that CmERF4 is a transcriptional inhibitor. CmERF4 overexpression in chrysanthemum reduced plant waterlogging tolerance, whereas overexpression of the chimeric activator CmERF4-VP64 reversed its transcriptional activity, promoting higher waterlogging tolerance than that observed in wild-type plants, indicating that CmERF4 negatively regulates waterlogging tolerance. Transcriptome profiling showed that energy metabolism and reactive oxygen species (ROS) pathway-associated genes were differentially expressed between CmERF4-VP64 and wild-type plants. RT-qPCR analysis of selected energy metabolism and reactive oxygen species-related genes showed that the gene expression patterns were consistent with the expression levels obtained from RNA-seq analysis. Overall, we identified new functions of CmERF4 in negatively regulating chrysanthemum waterlogging tolerance by modulating energy metabolism and ROS pathway genes.


Assuntos
Chrysanthemum , Espécies Reativas de Oxigênio/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo , Estresse Fisiológico/genética
8.
Planta ; 259(1): 13, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063918

RESUMO

MAIN CONCLUSION: Multi-locus GWAS detected several known and candidate genes responsible for flowering time in chrysanthemum. The associations could greatly increase the predictive ability of genome selection that accelerates the possible application of GS in chrysanthemum breeding. Timely flowering is critical for successful reproduction and determines the economic value for ornamental plants. To investigate the genetic architecture of flowering time in chrysanthemum, a multi-locus genome-wide association study (GWAS) was performed using a collection of 200 accessions and 330,710 single-nucleotide polymorphisms (SNPs) via 3VmrMLM method. Five flowering time traits including budding (FBD), visible colouring (VC), early opening (EO), full-bloom (OF) and senescing (SF) stages, plus five derived conditional traits were recorded in two environments. Extensive phenotypic variations were observed for these flowering time traits with coefficients of variation ranging from 6.42 to 38.27%, and their broad-sense heritability ranged from 71.47 to 96.78%. GWAS revealed 88 stable quantitative trait nucleotides (QTNs) and 93 QTN-by-environment interactions (QEIs) associated with flowering time traits, accounting for 0.50-8.01% and 0.30-10.42% of the phenotypic variation, respectively. Amongst the genes around these stable QTNs and QEIs, 21 and 10 were homologous to known flowering genes in Arabidopsis; 20 and 11 candidate genes were mined by combining the functional annotation and transcriptomics data, respectively, such as MYB55, FRIGIDA-like, WRKY75 and ANT. Furthermore, genomic selection (GS) was assessed using three models and seven unique marker datasets. We found the prediction accuracy (PA) using significant SNPs identified by GWAS under SVM model exhibited the best performance with PA ranging from 0.90 to 0.95. Our findings provide new insights into the dynamic genetic architecture of flowering time and the identified significant SNPs and candidate genes will accelerate the future molecular improvement of chrysanthemum.


Assuntos
Chrysanthemum , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Chrysanthemum/genética , Melhoramento Vegetal , Genômica , Reprodução , Polimorfismo de Nucleotídeo Único/genética
9.
Plants (Basel) ; 12(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38068697

RESUMO

Nitrogen (N), phosphorus (P), and potassium (K) are three macronutrients that are crucial in plant growth and development. Deficiency or excess of any or all directly decreases crop yield and quality. There is increasing awareness of the importance of rhizosphere microorganisms in plant growth, nutrient transportation, and nutrient uptake. Little is known about the influence of N, P, and K as nutrients for the optimal production of Chrysanthemum morifolium. In this study, a field experiment was performed to investigate the effects of N, P, and K on the growth, nutrient use efficiency, microbial diversity, and composition of C. morifolium. Significant relationships were evident between N application rates, C. morifolium nutrient use, and plant growth. The N distribution in plant locations decreased in the order of leaf > stem > root; the distributions were closely related to rates of N application. Total P fluctuated slightly during growth. No significant differences were found between total P in the roots, stems, and leaves of C. morifolium vegetative organs. Principle component analysis revealed that combinations of N, P, and K influenced soil nutrient properties through their indirect impact on operational taxonomic units, Shannon index, and abundance of predominant bacterial taxa. Treatment with N, P, and K (600, 120, and 80 mg·plant-1, respectively) significantly improved plant growth and quality and contributed to the bacterial richness and diversity more than other concentrations of N, P, and K. At the flowering time, the plant height, leaf fresh weight, root dry weight, stem and leaf dry weight were increased 10.6%, 19.0%, 40.4%, 27% and 34.0%, respectively, when compared to the CK. The optimal concentrations of N, P, and K had a positive indirect influence on the available soil nutrient content and efficiency of nutrient use by plants by increasing the abundance of Proteobacteria, decreasing the abundance of Actinobacteria, and enhancing the potential functions of nitrogen metabolism pathways. N, P, and K fertilization concentrations of 600, 120, and 80 mg·plant-1 were optimal for C. morifolium cultivation, which could change environmental niches and drive the evolution of the soil microbial community and diversity. Shifts in the composition of soil microbes and functional metabolism pathways, such as ABC transporters, nitrogen metabolism, porphyrin, and the metabolism of chlorophyll II, glyoxylate, and dicarboxylate, greatly affected soil nutrient cycling, with potential feedback on C. morifolium nutrient use efficiency and growth. These results provide new insights into the efficient cultivation and management of C. morifolium.

10.
Plants (Basel) ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960083

RESUMO

The chrysanthemum is widely used as a cut flower, potted flower, and garden flower worldwide and has high ornamental, edible, and medicinal value. The flower heads, composed of ray florets and disc florets, are the most diverse in terms of morphology among ornamental plants. Here, we compared and analyzed the developmental processes of different capitulum types as well as ray florets and disc florets. Morphological differentiation of the two florets occurred on the dorsal domain of the petals at stage Ⅳ of flower development, and differences in stamen development occurred at stage Ⅴ. The dorsal domain of the ray florets and the early stage of flower development were also an essential site and period, respectively, for the differences among capitulum types. In situ hybridization revealed that CmCYC2c, whose homologs are involved in the specification of floret identity in Asteraceae, was expressed in both the dorsal and ventral domains of the ray petals in the tubular-type chrysanthemum, whereas, it was differentially transcribed in the ray petals of flat- and spoon-type chrysanthemum cultivars and had lower or no expression in the dorsal domain and higher expression in the ventral domain at stage Ⅳ. Our study indicates that the expression pattern of CmCYC2c on the dorsal domain of the ray floret at stage Ⅳ contributes to the formation of diverse flower head types in chrysanthemums.

11.
Mol Hortic ; 3(1): 7, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37789495

RESUMO

The quantitative control of FLOWERING LOCUS T (FT) activation is important for the floral transition in flowering plants. However, the flowering regulation mechanisms in the day-neutral, summer-flowering chrysanthemum plant remain unclear. In this study, the chrysanthemum BBX7 homolog CmBBX7 was isolated and its flowering function was identified. The expression of CmBBX7 showed a diurnal rhythm and CmBBX7 exhibited higher expression levels than CmBBX8. Overexpression of CmBBX7 in transgenic chrysanthemum accelerated flowering, whereas lines transfected with a chimeric repressor (pSRDX-CmBBX7) exhibited delayed flowering. Yeast single hybridization, luciferase, electrophoretic mobility shift, and chromatin immunoprecipitation assays showed that CmBBX7 directly targets CmFTL1. In addition, we found that CmBBX7 and CmBBX8 interact to positively regulate the expression of CmFTL1 through binding to its promoter. Collectively, these results highlight CmBBX7 as a key cooperator in the BBX8-FT module to control chrysanthemum flowering.

12.
BMC Biol ; 21(1): 211, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807042

RESUMO

BACKGROUND: Anthocyanin is a class of important secondary metabolites that determines colorful petals in chrysanthemum, a famous cut flower. 'Arctic Queen' is a white chrysanthemum cultivar that does not accumulate anthocyanin during the flowering stage. During the post-flowering stage, the petals of 'Arctic Queen' accumulate anthocyanin and turn red. However, the molecular mechanism underlying this flower color change remains unclear. RESULTS: In this study, by using transcriptome analysis, we identified CmNAC25 as a candidate gene promoting anthocyanin accumulation in the post-flowering stage of 'Arctic Queen'. CmNAC25 is directly bound to the promoter of CmMYB6, a core member of the MBW protein complex that promotes anthocyanin biosynthesis in chrysanthemum, to activate its expression. CmNAC25 also directly activates the promoter of CmDFR, which encodes the key enzyme in anthocyanin biosynthesis. CmNAC25 was highly expressed during the post-flowering stage, while the expression level of CmMYB#7, a known R3 MYB transcription factor interfering with the formation of the CmMYB6-CmbHLH2 complex, significantly decreased. Genetic transformation of both chrysanthemum and Nicotiana tabacum verified that CmNAC25 was a positive regulator of anthocyanin biosynthesis. Another two cultivars that turned red during the post-flowering stages also demonstrated a similar mechanism. CONCLUSIONS: Altogether, our data revealed that CmNAC25 positively regulates anthocyanin biosynthesis in chrysanthemum petals during the post-flowering stages by directly activating CmMYB6 and CmDFR. Our results thus revealed a crucial role of CmNAC25 in regulating flower color change during petal senescence and provided a target gene for molecular design breeding of flower color in chrysanthemum.


Assuntos
Antocianinas , Chrysanthemum , Antocianinas/análise , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas
13.
Plant Sci ; 336: 111863, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683984

RESUMO

Flowering time and floret numbers are important ornamental characteristics of chrysanthemums that control their adaptability and inflorescence morphology, respectively. The FRUITFULL (FUL) gene plays a key role in inducing flowering and inflorescence meristem development. In this study, we isolated a homolog of the MADS-box gene FUL, CmFUL-Like 1 (CmFL1), from chrysanthemum inflorescence buds. Quantitative RT-PCR and in situ analyses showed that CmFL1 was strongly expressed in young inflorescence buds. Overexpression of CmFL1 caused early flowering while co-suppression expression of CmFL1 increased the number of florets. Furthermore, the floral promoting factors CmSOC1, CmFDL1, and CmLFY were up-regulated in the shoot tips of transgenic plants. In addition, RNA-seq analysis of the transgenic plants suggested that certain differentially expressed genes (DEGs)-such as MADS-box, homeobox family, and ethylene pathway genes-may be involved in the inflorescence meristem development. GO pathway enrichment analysis showed that the differentially transcribed genes enriched the representation of the carbohydrate metabolic pathway, which is critical for flower development. Overall, our findings revealed the conserved function of CmFL1 in controlling flowering time along with a novel function in regulating the number of florets.


Assuntos
Chrysanthemum , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inflorescência/genética , Inflorescência/metabolismo , Regulação da Expressão Gênica de Plantas/genética
14.
BMC Genomics ; 24(1): 553, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723458

RESUMO

BACKGROUND: Black spot disease caused by the necrotrophic fungus Alternaria spp. is one of the most devastating diseases affecting Chrysanthemum morifolium. There is currently no effective way to prevent chrysanthemum black spot. RESULTS: We revealed that pre-treatment of chrysanthemum leaves with the methy jasmonate (MeJA) significantly reduces their susceptibility to Alternaria alternata. To understand how MeJA treatment induces resistance, we monitored the dynamics of metabolites and the transcriptome in leaves after MeJA treatment following A. alternata infection. JA signaling affected the resistance of plants to pathogens through cell wall modification, Ca2+ regulation, reactive oxygen species (ROS) regulation, mitogen-activated protein kinase cascade and hormonal signaling processes, and the accumulation of anti-fungal and anti-oxidant metabolites. Furthermore, the expression of genes associated with these functions was verified by reverse transcription quantitative PCR and transgenic assays. CONCLUSION: Our findings indicate that MeJA pre-treatment could be a potential orchestrator of a broad-spectrum defense response that may help establish an ecologically friendly pest control strategy and offer a promising way of priming plants to induce defense responses against A. alternata.


Assuntos
Alternaria , Chrysanthemum , Antioxidantes , Chrysanthemum/genética
15.
Plant J ; 116(6): 1652-1666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696505

RESUMO

TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.


Assuntos
Chrysanthemum , Proteínas de Plantas , Fatores de Transcrição , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Chrysanthemum/fisiologia , Etilenos/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo
16.
Plant Sci ; 336: 111837, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611834

RESUMO

Flavonoids, of which the major groups are flavones, flavonols, and anthocyanins, confer a variety of colors on plants. Bud sports with variation of floral colors occur occasionally during chrysanthemum cultivation. Although it has been reported that methylation at the promoter of CmMYB6 was related to anthocyanin contents, the regulatory networks of flavonoid biosynthesis still remain largely unknown in mutation of chrysanthemum. We compared phenotypes, pigment composition and transcriptomes in two chrysanthemum cultivars, 'Anastasia Dark Green' and 'Anastasia Pink', and regenerated bud sports of these cultivars with altered floral colors. Increased anthocyanins turned the 'Anastasia Dark Green' mutant red, while decreased anthocyanins turned the 'Anastasia Pink' mutant white. Moreover, total flavonoids were reduced in both mutants. Multiple flavonoid biosynthetic genes and regulatory genes encoding MYBs and bHLHs transcription factors were differentially expressed in pairwise comparisons of transcriptomes in 'Anastasia Dark Green' or 'Anastasia Pink' and their mutants at different flowering stages. Among these regulatory genes, the expression patterns of CmMYB6 and CmbHLH2 correlated to changes of anthocyanin contents, and down-regulation of CmMYB11 correlated to decreased total flavonoid contents in two mutants. CmMYB11 was shown to directly activate the promoter activities of CmCHS2, CmCHI, CmDFR, CmANS, CmFNS, and CmFLS. Furthermore, overexpression of CmMYB11 increased both flavonols and anthocyanins in tobacco petals. Our work provides new insights into regulatory networks involved in flavonoid biosynthesis and coloration in chrysanthemum.

17.
Hortic Res ; 10(7): uhad101, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577400

RESUMO

Chrysanthemum Fusarium wilt is a soil-borne disease that causes serious economic losses to the chrysanthemum industry. However, the molecular mechanism underlying the response of chrysanthemum WRKY to Fusarium oxysporum infection remains largely unknown. In this study, we isolated CmWRKY6-1 from chrysanthemum 'Jinba' and identified it as a transcriptional repressor localized in the nucleus via subcellular localization and transcriptional activation assays. We found that CmWRKY6-1 negatively regulated resistance to F. oxysporum and affected reactive oxygen species (ROS) and salicylic acid (SA) pathways using transgenic experiments and transcriptomic analysis. Moreover, CmWRKY6-1 bound to the W-box element on the CmWRKY15-like promoter and inhibited its expression. Additionally, we observed that CmWRKY15-like silencing in chrysanthemum reduced its resistance to F. oxysporum via transgenic experiments. In conclusion, we revealed the mechanism underlying the CmWRKY6-1-CmWRKY15-like cascade response to F. oxysporum infection in chrysanthemum and demonstrated that CmWRKY6-1 and CmWRKY15-like regulates the immune system.

18.
Plant Physiol ; 193(4): 2413-2429, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37647542

RESUMO

Plant flowering time is induced by environmental and endogenous signals perceived by the plant. The MCM1-AGAMOUSDEFICIENS-Serum Response Factor-box (MADS-box) protein SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase; however, the transcriptional regulatory mechanism remains poorly understood. Here, we report that CmSVP, a chrysanthemum (Chrysanthemum morifolium Ramat.) homolog of SVP, can repress the expression of a key flowering gene, a chrysanthemum FLOWERING LOCUS T-like gene (CmFTL3), by binding its promoter CArG element to delay flowering in the ambient temperature pathway in chrysanthemum. Protein-protein interaction assays identified an interaction between CmSVP and CmTPL1-2, a chrysanthemum homologue of TOPLESS (TPL) that plays critical roles as transcriptional corepressor in many aspects of plant life. Genetic analyses revealed the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for CmSVP to act as a floral repressor. Furthermore, overexpression of CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis (Arabidopsis thaliana), overexpression of AtSVP or CmSVP in the Arabidopsis dominant-negative mutation tpl-1 led to ineffective late flowering, and AtSVP interacted with AtTPL, confirming the conserved function of SVP in chrysanthemum and Arabidopsis. We have validated a conserved machinery wherein SVP partially relies on TPL to inhibit flowering via a thermosensory pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chrysanthemum , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Correpressoras/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas
19.
Biology (Basel) ; 12(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508417

RESUMO

The endophytic microbiomes significantly differed across tea chrysanthemum cultivars and organs (stems and leaves). The most abundant endophytic bacterial genera were Pseudomonas, Masillia, and Enterobacter in the leaves and Sphingomonas and Curtobacterium in the stems of the five cultivars. Meanwhile, the most abundant endophytic fungal genera in the leaves and stems of the five tea chrysanthemums were Alternaria, Cladosporium, and Sporobolomyces. Specifically, Rhodotorula was dominant in the leaves of 'Jinsi huangjv' and Paraphoma was dominant in the stems of 'Jinsi huangjv'. In all cultivars, the diversity and richness of endophytic bacteria were higher in leaves than in stems (p < 0.05). The highest diversity and richness of endophytic bacteria were recorded in 'Chujv', followed by 'Jinsi huangjv', 'Fubai jv', 'Nannong jinjv', and 'Hangbai jv'. Meanwhile, endophytic fungi were less pronounced. Twenty-seven and 15 cultivable endophytic bacteria and fungi were isolated, four isolated endophytic bacteria, namely, CJY1 (Bacillus oryzaecorticis), CY2 (Pseudomonas psychrotolerans), JSJ7, and JSJ17 (Enterobacter cloacae) showed higher indole acetic acid production ability. Further field studies indicated that inoculation of these four endophytic bacteria not only promoted plant growth and yield but also increased total flavonoids, chlorogenic acid, luteolin, and 3,5-dicoffeylquinic acid levels in the dry flowers of tea chrysanthemums.

20.
Plant Phenomics ; 5: 0051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408737

RESUMO

The advancement of plant phenomics by using optical imaging-based phenotyping techniques has markedly improved breeding and crop management. However, there remains a challenge in increasing the spatial resolution and accuracy due to their noncontact measurement mode. Wearable sensors, an emerging data collection tool, present a promising solution to address these challenges. By using a contact measurement mode, wearable sensors enable in-situ monitoring of plant phenotypes and their surrounding environments. Although a few pioneering works have been reported in monitoring plant growth and microclimate, the utilization of wearable sensors in plant phenotyping has yet reach its full potential. This review aims to systematically examine the progress of wearable sensors in monitoring plant phenotypes and the environment from an interdisciplinary perspective, including materials science, signal communication, manufacturing technology, and plant physiology. Additionally, this review discusses the challenges and future directions of wearable sensors in the field of plant phenotyping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...